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A theoretical model has been developed to investigate the stability ofa disturbance in 
an incompressible turbulent shear flow dominated by turbulence scales that are small 
with respect to the cross-stream dimension of the flow. The approach utilizes the 
‘phase average ’ concept to derive the differential equations governing the mechanics 
of a potential flow disturbance. Turbulence closure is effected at  second order. The 
result is an Orr-Sommerfeld-type equation with complications introduced by the 
turbulence model. Integration of the linear eigenvalue problem for a wake disturbance 
leads to the result that the critical eddy-viscosity-based Reynolds number is markedly 
increased by decreasing the turbulence scale. The viscoelastic behaviour of background 
turbulence, further complicated by the effects of mean shear, appears to provide 
stabilization and is discussed in some detail. 

1. Introduction 
Everyone has undoubtedly observed the calm wake behind a large steamship as it 

traverses the open sea. The near wake is rather homogeneous in appearance and 
dominated by turbulence from the ship’s boundary layer. A particularly intriguing 
qualitative aspect of such a wake is its apparent ability to damp surface waves incident 
upon its turbulent structure. Something similar seems to occur in the wake of a hyper- 
sonic vehicle surrounded by a turbulent boundary layer as first described by Finson 
(1973). He observed that the wake diffused very slowly and appeared to consist of 
rather fine-scaled turbulence that originated in the boundary layer. A second-order 
turbulence closure model was used to compute the observed wake development. In 
addition, he recognized that the wake must be stabilized to large-scale laminar-type 
instabilities by the fine-scaled turbulence, since such instabilities would rapidly 
generate large-scale, intense turbulence that would be inconsistent with the observed 
low diffusion rate. 

The purpose of this paper is to investigate the stability of a free shear flow containing 
fine-scaled background turbulence. By fine-scaled i t  is meant that the length scale 
of the turbulence should be small compared to the wavelength of potentially un- 
stable modes. For computational purposes, we limit ourselves to the specific case of a 
two-dimensional incompressible wake. A more general objective will be to elucidate 
the nature of the interaction between background turbulence and a potential wave 
disturbance. In an interesting paper, Crow (1968) showed that the background tur- 
bulence generally behaves in a viscoelastic manner. The elastic limit pertains when 

t Present address : Physical Sciences Inc., Woburn, Massachusetts. 
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the relaxation rate of the turbulence is much smaller than the imposed rate of defor- 
mation, and Crow was able to derive the effective elastic modulus for isotropic turbu- 
lence from purely kinematic considerations. He also obtained an approximate solution 
for the effective eddy viscosity in the viscous limit (fast turbulence relaxation). 

Hussain & Reynolds ( 1 9 7 0 ~ )  b, 1972), and Reynolds & Hussain (1972) provided the 
formalism required to study the behaviour of a perturbation in a turbulent shear flow. 
They introduced the concept of the phase average ’ or ‘ periodic average ’ which was 
used to develop equations for a set of wave-perturbed quantities, in addition to the 
usual time-averaged variables. An analogous averaging technique has been employed 
by investigators studying the effect of a turbulent wind on ocean surface waves (e.g. 
Phillips 1966). Mollo-Christensen (1 971) distinguished the two averaging processes by 
considering the turbulence to be characterized by two substantially different length 
scales. Hussain & Reynolds showed that the background turbulence affects a wave 
disturbance through the wave-induced oscillation in the Reynolds stress. They used 
an eddy-viscosity closure approximation to compute this induced Reynolds stress, 
and obtained reasonable agreement with the results of their experiment in a turbulent 
channel flow. However, they recommended a second-order closure of the type dev- 
eloped here as the obvious improvement. 

Reynolds ( 1972) employed a similar eddy-viscosity closure approximation to obtain 
a stability map for large-scale disturbances in an incompressible two-dimensional 
turbulent wake. In  so doing it was necessary to consider carefully the jump conditions 
a t  the outer edge of the turbulent zone (superlayer), where the viscosity is discon- 
tinuous. However, the neutral stability Characteristics obtained by Reynolds are not 
essentially different from those in a laminar wake, with the molecular viscosity 
replaced by the eddy viscosity. This result does not explain the stabilizing influence 
of fine-scaled background turbulence discussed a t  the outset. Assuming the eddy 
viscosity to be proportional to the scale size, the fine-scale-dominated wake would have 
a larger effective Reynolds number, and hence be more unstable, than would a stan- 
dard turbulent wake, according to Reynolds’ (1972) result. 

The more general viscoelastic behaviour of fine-grained turbulence would suggest 
more complicated stability characteristics. For example, Betchov ( I  966) obtained a 
shift of the Blasius boundary-layer neutral stability curve by using a complex vis- 
cosity to model the visco-elastic properties of polymer additives. The approach taken 
in the present study is to effect closure a t  second order. It will be shown how one 
naturally obtains the expected results in the viscous and elastic limits, and we have 
elaborated upon the work of Crow (1 968) by adding the features of the mean shear. 

The approach taken here is rather similar to that of Elswick (1971),? although for 
different purposes. In the present paper, we determine the conditions leading to  the 
‘apparent) stability of fine-scaled turbulent shear flows. Elswick, on the other hand, 
sought to establish whether the large eddies observed in turbulent shear flows can be 
attributed to instability of the basic flow. We specifically consider the characteristics 
of a shear flow (wake) that is easily stabilized whereas Elswick considered the charac- 
teristics of the shear layer, which is perhaps most unstable. Both studies recognize, 
however, that some kind of viscoelastic response of perturbations of the background 
turbulence should be anticipated in a proper treatment of the turbulent flow stability 

t The authors are indebted to a reviewer for bringing this unpublished thesis to their attention. 
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problem. Elswick employed a somewhat less detailed second-order closure scheme than 
that utilized here. He obtained a lower branch of the neutral stability cuIve for the 
turbulent shear layer, and found a critical obliquity (about 50') of the disturbance to 
the main stream above which his assumption of homogeneous background turbulence 
apparently becomes inappropriate, 

2. Basic equations 
The specific problem to be addressed is that  of the stability of an incompressible, 

two-dimensional wake containing background turbulence. It will be tacitly assumed 
that there is a wide separation between the energy-containing wavenumbers of the 
turbulence and potentially unstable wavenumbers, i.e. that  the background turbu- 
lence is relatively fine-scaled. Sufficiently large-scaled turbulence would merely serve 
as initial disturbances for the standard lamina1 -type instability process. We further 
presume that the required characteristics of the mean flow (mean velocity) and tur- 
bulence (intensity, scale size, etc.) may be specified. 

In order to study the development of a wave disturbance, we adopt the concept of a 
periodic or phase average. Several authors, most notably Hussain & Reynolds 
(1970a ,  b ,  1972) and Reynolds & Hussain (1972), have used this technique. It involves 
decomposing any flow property such as the velocity u(x,  t )  into a mean value U(x), a 
contribution C ( x , t ) ,  due to the wave, and the contribution u'(x,t) from the back- 
ground turbulence : 

u(x,  t )  = U ( X )  +G(X,  t )  + u'(x, t ) .  (1) 

The conventional time average for any flow variable f is defined as 

and the periodic average is defined as 

where 7 is the period of the wave. The periodic average may be considered to be an 
ensemble average a t  a fixed value of the phase of the wave or, for a two-dimensional 
wave, to be an average over the third dimension. The properties of the periodic 
average are described in detail by Hussain & Reynolds (1970a)  and by Reynolds & 
Hussain (1972) .  We note in particular that  

( f )  = J + J  (4) 

It is considered that the background turbulence is random and not correlated with the 
wave, so that ( f ' )  = 0. 

The governing equations for the wave disturbance .iii are obtained by applying the 
periodic and time averages to the continuity and momentum equations. I t  is easily 
shown that each velocity component satisfies the usual incompressible continuity 
relation 
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We shall not write down the momentum equation for the mean velocity or the fluc- 
tuating turbulent component. As long as the wave disturbance strength isinfinitesimal, 
the mean and turbulent fields are unaffected by the wave. The momentum equation 
for the wave disturbance is 

It is apparent that the final term in this equation contains the influence of the back- 
ground turbulence on the wave disturbance. The preceding terms are those which 
would be obtained in a standard viscous-stability problem. The final term involves the 
difference between the periodic and time averages' of the turbulent Reynolds stress. 
Thus the wave experiences a stress which is the oscillation induced in the Reynolds 
stress by the wave. Following Reynolds & Hussain (1972) we introduce Fij for the 
negative of this stress - 

(7) p . .  23 = (u;u!)-u;u(i. J 

The term containing F i j  in (6) is analogous to the familiar Reynolds stress term in the 
mean momentum equation for turbulent flows. Its appearance introduces a closure 
problem. One approach (used by Reynolds & Hussain 1972 to analyse their channel 
flow data and by Reynolds 1972 for wake stability calculations) is to introduce a 
gradient diffusion approximation for F i j .  The obvious choice for the diffusivity is the 
eddy viscosity of the background turbulence : 

With this closure approximation, the  wake stability problem essentially reduces to the 
laminar stability problem, except perhaps for some difference in the radial profile of 
the viscosity. Our approach will be to attempt the derivation of a more basic equation 
for p i j ,  and we do this by invoking closure a t  second order. 

The formally exact governing equation for Fij has been given by Reynolds & 
Hussain ( 1972) : 

a -  a -  
(u; u; u; - (u; u; U L ) )  + - (p'ui - (p'u;)) 

axi 
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This equation is not quite as forbidding as it first appears. The left-hand side obviously 
represents convection. The first three types of terms on the right may be called produc- 
tion terms, and require no closure. The next six terms are second order in wave ampli- 
tude and will be omitted for present purposes. The terms involving triple correlations 
represent turbulent diffusion of tiij. Then we have terms involving pressure fluctua- 
tions, which tend to drive the turbulence toward isotropy. The viscous diffusion term 
is, of course, small a t  high Reynolds numbers. Finally there are dissipation terms. 

Equation (9) will be useful only if a closure scheme can be developed for the turbu- 
lent diffusion (triple correlation), pressure fluctuation, and dissipation terms. This 
cannot, of course, be done in a rigorous manner. However, reasonably useful approxi- 
mations have been developed for turbulent flow computations (i.e. for the time 
averages, in situations without an imposed wave disturbance), and it will be assumed 
here that similar approximations can be applied to periodic-averaged quantities as 
well. The particular expressions to be used are taken from Rotta (1951) and Hanjali6 
& Launder (1972). 

Let us first consider the dissipation term. At sufficiently high Reynolds numbers the 
dissipation rate should be isotropic. The common closure for-the time-averaged rate is 

Here q2 is the turbulent kinetic energy $ak and A the macroscale of the relaxation 
rate. Finson (1973) found that grid turbulence data indicates 0.4 to be the appropriate 
value for the constant kd. Considering this rate to be unaffected by the wave distur- 
bance, the analogy to (10a)  for the periodic average is 

The difference between (10a) and ( l o b )  then yields 

The manner in which pressure fluctuations drive turbulence toward isotropy has 
been modelled by Rotta (1951) : 

Data on the return of grid turbulence to isotropy indicates a value of 0.48 for k,, 
(Finson 1973). The need for the term involving the mean shear was recognized by 
Rotta (1951). We adopted a somewhat simplified version of the expression suggested 
by Hanjalic & Launder (1972) for @: 

i# = Sli q2 - &(SWLl sij + smj Sil) q 2  + ++alj s,i - &(Sii S,l+ si, Smj + Sml s i j  + smi Si l ) ,  

- ( l i b )  
8..  = u! ul. - 2 2 a i j .  where a j  a 3 34 

The obvious requirements of symmetry with respect to i, j and continuity (3Ek = 0) 
are satisfied with this form. I n  fact, the use of these requirements to determine the 
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fractional coefficients in (1 1 b )  guarantees that the proper stresses result in the elastic 
limit, to be discussed be1ow.t 

By analogy with (1 1 a), it may be argued that the appropriate form for the periodic- 
averaged pressure fluctuation terms is 

( p J U ' )  axj  + < p &) - = - k  -((u;u;)-~(u;u;)si,) 4 
PA 

where lip denotes ( 1 1 b )  with time averages replaced by periodic averages ($(uA u;) 
instead of q2) .  If we then subtract (1 1 c) from ( 11 a) we obtain the desired closure ap- 
proximation for the pressure fluctuation terms 

Finally there are the turbulent diffusion and pressure diffusion terms, which we shall 
neglect. This is admissible if the eddy viscosity of the background turbulence is not 
too large, which will generally be the case for fine-scaled background turbulence. If 
d, is the wake width, the diffusion terms should be of older sPij/d&. For comparison 
the production terms P i ,  & i j / a x k  should be - Pi, Auld,. Thus 

8 -- diffusion 
production Aid,* 

This ratio is less than unity even for equilibrium wake turbulence (Townsend 1956). 
In the wake of a slender body where the background turbulence is residual boundary- 
layer turbulence, as discussed by Finson (1973), background turbulence should be 
relatively weak and neglect of the diffusion terms would be quite well justified. 

Inserting (1Oc) and (1 1 d )  into ( Q ) ,  and omitting t h e  several terms that have been 
argued to be negligible, yields the governing relation for the wave stress Pi,: 

t Subsequent to the effort described here, Launder, Reece & Rodi (1975) and the authors 
(unpublished) have found that the inclusion of an additional term in (1 1 b) involving sLj  yields 
more accurate agreement with data from experiments such as that of Champagne, Harris & 
Corrsin (1970). However, such a term is unimportant in either the viscous or elastic limits and 
its omission is not expected to have a significant effect on the results presented here. 
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This is still a relatively complicated equation, particularly in view of the fact that it 
couples different components of iii. The selection of a minimum self-consistent set of 
iii’s will be discussed in the following section, where the eigenvalue problem is 
formulated. 

It must be admitted that the present application of second-order closure is rather 
bold. There is little direct evidence, even from such a sophisticated experiment as that 
of Hussain & Reynolds (1972), to offer support. Intuitively, it may be argued that the 
above closure approximations should be permissible (or at least as permissible as in 
‘ standard ’ turbulent shem flows) if the wave frequency 2n/r is small compared to the 
turbulent relaxation rate q / A .  In  the opposite limit of very high wave frequency 
(2n/7 q / A ) ,  the relaxation terms requiring closure prove to  be negligible in com- 
parison to the inertial terms. Thus the above equation for iij should be accurate in the 
opposite limits of zero and infinite wave frequency, and we can only hope that it will be 
reasonable a t  intermediate frequeneies. In  the final section we shall elaborate on the 
behaviour of the wave stress equation in various limits, and it will be seen that the 
equation possesses several interesting and not unexpected properties. 

3. Two-dimensional wake stability calculations 
In this section we describe the simultaneous solution of (6) for the wave perturba- 

tion velocity and (13) for the wave stress, as a linear stability problem. In essence, it is 
possible to substitute (13) into (6) to obtain a fourth-order Orr-Summerfeld type of 
equation with complicated viscous terms. 

We consider a two-dimensional wake flow with a mean velocity, ?i,(x,). Subscripts 1 
and 2 refer to directions along the main flow and directions normal to the main flow, 
respectively. Since we consider the amplitudes of the wave field properties to be small, 
quadratic terms in wave quantities (e.g., i i iGj)  are neglected. The wave stability 
equations then read: 

For the two-dimensional wake considered here, there are four independent, non- 
zero components of the wave-induced Reynolds stress tensor: F,,, i,,, i,,, and F,, = i21. 
Using the boundary-layer approximation to retain only cross-stream derivatives of 
the mean and turbulent properties, the equations for these four stress components are : 
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+i l l -  A (  --- Ic, ?) +r,,h - q ( k p  3-- ?)+?,,$(-?-$). (19) 

The complexity of these equations can be reduced somewhat by noting that the F3,  
component barely enters the two-dimensional stability problem. It does not enter 
(14) or (15) for the perturbation velocities, and appears only as the final term in each 
of (16)-( 18). With the values quoted above, kcf = 0.40 and k, = 0.48, it  is readily seen 
that the coefficient of the P,, term is an order of magnitude smaller than the leading 
relaxation term in each equation (that containing ill in (16), etc.). Henceforth, we will 
use the reduced system of (16)-( 18) without the i,, terms. This does not imply that 
f,, = 0; rather, it means that P,, is not significant to the solution of (14)-( 18). 

We may solve the linear system of (14)-( 18), by assuming the wake to be a parallel 
flow in the x1 direction; we can then Fourier decompose the unknowns in the following 
manner : 

[elj G17, Pl1, P12, p2,1 = [K(x2), 93K(x2), P(x,), R11(x2), Rl2(x2L Rz2(x2)l cia@+), (20) 
where 01 is the disturbance wavenumber (real), and c is the disturbance wave phase 
speed = c9 + i c y  (complex). We are thus considering the temporal development of an 
instability a t  a particular x1 location in the wake. The differential equations (with 
the prime denoting derivative with respect to x,) for our unknowns become the follow- 
ing : 

(21) 

(22) 

(23) 

Fourier decomposition of the stress (16)-( 18) provides three simultaneous algebraic 
equations that can be solved for R,,, R,,, and R,, in terms of the velocity components 
W,, W,, W;. These results are of the form 

w; = -a%, 

iaW,(U,- C) + iW2 U; = - i01P - (i01R1, + R;,), 

- aW,(El- G) = - P‘ - (iaR,,+ R;,), 

Rll = 71K+72K+73 W;, (24) 

R12 =74K+76-W2+7aK (25) 

R22 = 77K+7*W2+79w;, (26) 

where the 7’s depend on the mean and turbulent quantities. The expressions for these 
coefficients are quite involved and not very illuminating, and will not be reproduced 
here. The important point is that substitution of (24)-(26) into (21)-(23) and the 
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relation d W,/dx2 = W', leads to a system of four simultaneous linear first-order differ- 
ential equations for the unknown functions W,, W',, W2 and P. 

For boundary conditions, far from the wake axis the disturbances must die out. 
Hence W,, W',, W,, P-t 0 as x2+ 0. At the wake axis the condition will depend on 
whether we consider symmetrical or asymmetrical disturbances. Our calculations have 
been performed for the asymmetrical case ( W ' ,  = 0 at x2 = 0), since that is known to 
be the most unstable under laminar conditions (cf. Betchov & Criminale 1965). We 
also have P = 0, W, = 0 on the axis. 

The dynamical equations together with the boundary conditions constitute a linear 
homogeneous system with the  only possible nontrivial solution an eigensolution. We 
shall focus on theeigenvalues for neutral stability ( c y  = 0) for the turbulence-modified 
On-Sommerfeld problem. In  a typical laminar stability calculation, the neutral curve 
is plotted in ct, R (Reynolds number) co-ordinates, with cw varying along the curve. 
We have neglected purely viscous effects and hence R is not a parameter in our calcula- 
tions. Two parameters take the place of the Reynolds number in the present turbulent 
stability analysis, involving the intensity (q2) and scale (A) of the background turbu- 
lence. There are several possible non-dimensional combinations, to be discussed in 
more detail in the following section. The two parameters in terms of which our stability 
calculations will be presented are R, = Au, rw/(qA)  and A/rw.  Since the eddy viscosity 
tends to be proportional to qA, Re is an effective Reynolds number for the background 
turbulence. The ratio Alr ,  obviously measures the fineness of the turbulence. 

The mean velocity was taken to be a Gaussian for our calculations:? 

(27) 
- 
u, = 1 - A exp ( - b, xi/rL), 

where b, = 0.693 and A is the axis velocity defect normalized by the free-stream 
velocity. The three normal components of the background turbulence were assumed 

equal u;u; = uiu; = uju; = $q2 and uniform across the wake. We used an eddy- 
viscosity approximation to specify the Reynolds stress of the background turbulence 

- - -  

Finally, the length scale A was taken to be constant across the wake. 
The differential equations presented above were integrated using the rather stan- 

dard fourth-order Runge-Kutta scheme with complex arithmetic. Gram-Schmidt 
orthogonalization was employed in order to preserve the linear independence of modes 
(see, for example, Betchov & Criminale 1965). This procedure was required for the 
eddy Reynolds numbers considered here, values up to R, = 2000. Another means that 
we used for improving the numerical calculations of the Orr-Sommerfeld equation was 
to introduce a stretched independent variable 7, defined by 

7 = xz("IR,I)~. (29) 
This variable helps to normalize the various terms of the differential equations so that 
small errors will not be artificially amplified by the factor ctR, appearing in the untrans- 
formed system (see, for example, Radbill & McCue 1970). Most of our results were 

t Note that since the mean velocity profile for a wake resembles the mean velocity profile of a 
jet when one applies the appropriate translation of the frame of reference, we are also providing 
approximate jet solutions. A word of caution is appropriate however since the turbulence 
characteristics of jets are more non-homogeneous than the characteristics of wakes. 
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FIGURE 1. Computed neutral stability curves for a two-dimensional wake 
dominated by fine-scale turbulence. 

generated using the CDC 7600 machine. A typical eigenvalue on a neutral curve 
required four iterations to converge and consumed approximately S seconds of coni- 
puter time. 

Figure I shows the computed results on the a, R, (wavenumber/eddy-viscosity 
based defect Reynolds number) plane with the turbulence scale size A as the para- 
meter locating individual neutral curves (cy = 0). Note that the minimum critical 
eddy Reynolds number increases monotonically with the reduction of A. Since the 
stable regions in the a-R, plane are to the left of the neutral curves, these results 
imply that the two-dimensional incompressible turbulent wake dominated by fine 
scales becomes increasingly stable to imposed disturbances as the (fine) turbulence 
scale decreases. It should be noted here that the calculations have not been extended 
to larger values of the disturbance wavenumber a (or smaller values of the disturbance 
wavelength) due to the extreme numerical difficulty in obtaining such eigenvalues. 
However, it should be recalled that the above derivation assumed that the disturbance 
wavelengths ale much larger than typical background turbulence length scales, so 
that the  model becomes invalid at large wavenumbers (when aA is of order unity). On 
the contrary, it becomes rather easy to compute eigenvalues for small wavenumbers. 
Another point of note is that the calculations become very difficult for smaller values 
of A (or larger values of Re) than presented. In  general, the product aR, controls the 
numerical aspects of the computation (see (29));  large values of a and R, provide the 
most difficulty. 

The computed neutral stability curves (figure 1)  become virtually independent of 
the wavenumber as the turbulence scale size relative to the wake radius becomes small. 
This is particularly evident for the A / r ,  = 0.05 neutral curve. On the other hand, as 
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A 
0.30 
0-25 
0.23664 
0.20 
0.15 
0.12896 
0.10 
0.09 
0.08 
0.07 
0.06 
0.05 

a 

1.147 x 10-2 
1-004 
0.975 
0.852 
0.635 
0.447 
0.301 
0.272 
0.246 
0.215 
0.182 
0.153 

REEl 

23.0 
29.8 
32.3 
41.6 
66.5 

100.0 
215.0 
288.0 
406.0 
619.0 

1010.0 
1720.0 

Ecr 

4.35 x 10-2 
3-35 
3.10 
2.41 
1.50 
1 .oo 
0.465 
0.348 
0.246 
0.162 
0.0990 
0.0581 

qZr = (f.JA12 
2.10 x 1 0 - 2  
1.80 
1.71 
1.45 
1.01 
0.601 
0.216 
0.149 
0.0949 
0.0533 
0.0272 
0.0135 

TABLE 1. Critical Reynolds numbers ( c g  = - 40.0). 

Air, increases, the wavenumber dependence becomes significant and the neutral 
curve tends to resemble the classical wake stability curve (cf. Reynolds 1972). 
However, the classical neutral curve does not envelop the curves calculated in the 
present paper, due to the more general nature of the stress-strain relationship in the 
presence of background turbulence. If we use the value of the Reynolds number in the 
range where the stability curve is insensitive to wavenumber, a cross-plot of the critical 
Reynolds number for each neutral curve versus the turbulence scale size effectively 
provides all the information of figure 1. In  figure 2 we present this cross-plot and the 
eigenvalues which lead to this curve are given in table 1. Although we can offer no 
explanation, the stability calculations seem to indicate quite clearly that RE., - A-3 

for smaller values of A. 
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4. On the behaviour of background turbulence 
It is appropriate at this point to discuss the nature of the interaction between a wave 

perturbation and background turbulence, to the extent that it can be deduced from 
the model equations and computations presented above. First of all, we may com- 
pare the various terms on right-hand side of (13), for the wave-induced Reynolds 
stress, with the convection terms on the left side of that equation. In  SO doing, we use 
the boundary layer approximation for derivatives in the normal direction, 

a p x 2  - r;l, 

and from (20) for streamwise derivatives of wave perturbation quantities, a/8x1 N a .  
We find that 

A% 1 =R,N:'- mean shear production 
convection u ar,,,' 

- 
u;u; B 1 

or --, 
convection urii arw urii arw 

%/ax, terms q 2 8  1 
= R 2 - - - ; - -  

dissipation or p' terms = R , w - -  qlu 1 

convection w o w  arw 
__ 

The term 4, au; ui/axk, representing inhomogeneity of the background turbulence, 
was not considered here although it is of the same order as the ratio expressed by 
(30b). As indicated by the calculations presented in figure 1, we are interested in 
wavenumbers satisfying ar, < 1. According to (30a)  production by the mean shear 
will be small only if the mean shear is very small, Au,/u < 1. In (30b) there is no 
a priori reason to presume q 2 8 / ( % i i j )  or u;; 0/(SPij) to be small. And, with respect 
to (30c) if we envision background turbulence as being characterized by both small 
intensity and scale size, the dissipation and tendency-toward-isotropy terms are not 
easily neglected. Thus all of the terms in (13) should in general be retained, as was 
done in the calculations presented above. 

Elastic limit 

If the mean shear (Ai i )  and the turbulent relaxation rate q / A  are very small (as well as 
the Reynolds stress gradient auiA/axk), that is R, < 1, R, < 1, ( 1 3 )  reduces to 

This is the elastic limit, with the rate of generation of stress ( - P i j )  proportional to the 
rate of strain aGj/ax,  and the effective modulus of elasticity involving the background 
turbulence intensity. If the turbulence is isotropic, then Zij = 0 and (1 1 b )  yields 

and ( 3 1 )  becomes 
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This is precisely the result of Crow (1968). The result in this limit is exact in the sense 
that no closure is required; Crow (1 968) also derived (32) from the requirements of 
continuity and isotropy. It should be noted that the conditions under which this limit 
applies are quite restrictive. 

Viscous limit 

Here we again require homogeneous mean ( a;Ei/ax, = 0) and turbulent (au; uL/ax, = 0) 
flows. Also the wavenumber a: must be low so that the convective term is small. To be 
precise, the viscous limit requires R, 9 1, R, 9 1, in which case (13) reduces to 

- 

If we again assume isotropy for the background turbulence, (34) yields for f12 

This is clearly of the viscous form with an effective viscosity of (&kP) qA. Such a value 
is quite close to the eddy viscosity; many authors, for example Ng & Spalding ( 1  9721, 
have used the approximation E - qR, and the coefficient &k;l is of ordeI unity. 

Equation (35) shows that the viscous approximation used by Hussain & Reynolds 
(1972) and Reynolds (1972) can be derived from the governing relation for Fij. How- 
ever, as with the elastic limit, this limit can be justified only with some rather drastic 
assumptions. At least in the absence of mean shear, the general behaviour is viscoelastic 
as recognized by Crow (1968). He also discussed the fact that the turbulence relaxation 
rate q / A  determines whether the behaviour is elastic or viscous, but the viscous 
aspect cannot be addressed without introducing closure for the relaxation terms, as is 
done here. 

General viscoelastic behaviour 

One simple type of non-Newtonian fluid is the Maxwellian fluid, in which the stress 
( T ~ ~ )  obeys the following constitutive relation: 

where TI is a time constant. To determine the effective (complex) viscosity, assume 
that the velocity and stress are proportional to expia(x-ct) ,  as in (20). It is then a 
straightforward matter (see, for example, Betchov & Criminale 1965) to show that the 
complex viscosity vo e-ie is given by 

(37) u,, = u / (  1 + (a:cT'J2)4, 8 = - tan-, (acT,). 

For the fine-scaled turbulent fluid considered here, the constitutive relation follows 
from (17) above. If the terms representing mean shear and inhomogeneity of the 
background turbulence are omitted, and if we set rii = - i.,,, then ( 1 7 )  becomes 
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This form is similar to that of the Maxwellian fluid, and the modulus and argument of 
the viscosity are found to be 

4 9A _-  
15 kp 

4 '  

In  our calculations U1 - c = U1 - cB since only the neutral curves (cx = 0) are obtained. 
Furthermore, iil -cB was found to vary between 1-1OA and 40A, and as a result the 
phase angles are positive. Positive phase angles are known to be stabilizing, which 
helps to explain the neutral stability calculations. 

Role of mean shear 

Unfortunately, this viscoelastic description seriously oversimplifies the nature of 
background turbulence, because mean shear effects tend to be quite important. To 
illustrate this, we considered solving ( 1 3 )  for Pii with the wave velocity Q im,posed, of 
the form given by (20). This is course is not proper since Q and Pij  must be solved for 
simultaneously. That was the subject of the previous section, so this exercise will not 
be dwelt upon except to point out one important result. 

To keep matters simple we assumed Pll = P Z 2  = P,,, so that ( 1 3 )  results in two coupled 
equations for Pll and P12. It was further assumed that the background turbulence is 
isotropic. The two equations are linear in PI,, P,,, and the solution consists of homo- 
geneous and particular terms. The latter are of the form (20), with R,, and R,, ex- 
pressed in terms of rather intricate algebraic expressions that are not particularly 
enlightening. The homogeneous terms are of the form 

P i j ,  h = f(x - E,t) ea'z, 

where a' is given by 

The roots of this equation are real, and there is a positive root if 

Thus there is the possibility of an exponentially growing solution if the mean shear 
rate is greater than the relaxation rate of the turbulence. This inequality may or may 
not be satisfied in realistic situations. It should be noted that there are practical 
upper limits to the value of q/h, since very intense and very fine-scaled turbulence 
would tend to dissipate rapidly. This does not necessarily mean that the wave stress 
would in reality grow indefinitely, for we have assumed the wave velocity to have a 
constant amplitude in this exercise. It does, however, indicate that the mean shear 
may be expected to have an important effect if aU,/ax, 2 q / A ,  and that the general 
behaviour is not simply viscoelastic. 
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5. Concluding remarks 
A theoretical treatment has been presented for the interaction between fine-scaled 

background turbulence and potential large-scale disturbances in shear flows. The 
second-order closure approximations that are introduced are not well substantiated, 
and the resulting equations should probably be considered as no more than model 
equations. However, the results do shed light on the nature of the interaction between 
large-scale disturbances and background turbulence. I n  the absence of mean shear 
and turbulence inhomogeneities, the general behaviour is viscoelastic, as suggested by 
earlier workers. The behaviour is more complicated if mean shear or inhomogeneities 
exist, in which case second-order closure is essential. The linear stability calculations 
that are reported for an  idealized wake flow contain the interesting result that  stabili- 
zation increases as the turbulent scale size becomes finer (see figure 1) .  

Bradshaw (1966) observed that a similar process of stabilization occurs in the near 
field of plane mixing layers. If the boundary layer on the splitter plate is laminar, 
transition is observed just beyond the separation point and a fully turbulent mixing 
layer is quickly established. But if the boundary layer is turbulent, only a slow relaxa- 
tion to the fully turbulent mixing layer occurs, requiring much larger distances than if 
the shear layer originates from a laminar boundary layer. Several recent studies have 
documented the nature of this dependence on initial conditions for both plane and 
axisymmetric mixing layers (Hussain & Clark 1977; Hussain & Zedan 1978a, b ;  
Husain & Hussain 1979). One-dimensional frequency spectra obtained by Husain & 
Hussain (1979) clearly show the development of instabilities, harmonics, etc., in the 
laminar case. The initially turbulent case, on the other hand, shows a monotonic 
evolution of the spectrum with no evidence of any discrete modes. Recent flow 
visualization studies of high Reynolds number mixing layers (Clark & Hussain 1979) 
have revealed that the organization of the coherent structure in a turbulent mixing 
layer is quite stable when it is initially fully turbulent, compared to cases when the 
layer is initially laminar. This last study seems to illustrate what our model has demon- 
strated; however, to our knowledge, there is no direct experimental support for the 
model presented here. A careful incompressible experiment to  determine wake stability 
boundaries over a range of Air, is clearly desirable. Whether generated by a grid or by 
the boundary layer on the wake-producing body, the resulting scale sizes should be 
3-30 times smaller than normal wake turbulent scale sizes. The Reynolds number of 
the flow would have to be quite high so that the background turbulence would not 
decay by viscous dissipation over wake distances of interest. A brief attempt was 
made by J. A. Woodroffe, P. I. Singh and H. H. Legner (1974, private communica- 
tion) to stabilize a jet by introducing grid turbulence, with inconclusive results, most 
likely due to the marginal Reynolds number of the flow. 

A realistic attempt a t  examining the features of a supersonic wake under conditions 
where the wake is apparently stabilized was undertaken by Avidor & Schneiderman 
(1975). This experiment involved the axisymmetric wake produced by a sting in a 
Ludwieg tube with a Mach number of 2.5; the sting boundary layer was fully turbulent, 
with a thickness comparable to the sting diameter. At the lowest Reynolds numbers 
(based upon sting diameter), Re, N 7.5 x 104, they observed the classical xf wake 
growth from the near wake. As the Reynolds number was increased, longer portions 
of non-growing (stable in the present context) wake were seen, up to a distance of 50 
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diameters a t  the highest Reynolds numbers tested, Re, = 1.5 x lo6. Detailed laser 
velocimetry was performed a t  an intermediate condition, Re, = 6 x lo5, where the 
wake was apparently stabilized for 25 diameters. From these measurements, the near 
wake scale size (macroscale) was estimated to be about Q of the self-similar wake value, 
and the r.m.s. fluctuating velocity was shown to be perhaps 50 %. At the lowest Rey- 
nolds number, where no wake stabilization was evident, the near wake scale size was 
approximately equal to the self-similar value. The trend observed in the Avidor 
& Schneiderman experiment is thus qualitatively consistent with the present 
stability calculations. However, no detailed comparisons can be made because 
only incompressible, two-dimensional wakes have been modelled and the experi- 
mentally observed scale sizes are larger than the values considered in figures 1 and 2. 
It is interesting to note that conditions for the hypersonic cone near wakes considered 
by Finson (1973) correspond to p/Auo 0.04, A/Y, 0.03, Re 800. While i t  is 
extremely unfair to compare these values with the results given here, they indeed fall 
in the stable regions of figures 1 and 2. 

In  addition to the hypersonic wake behaviour that suggested this effort, other 
interesting observations implying a stabilizing effect due to background turbulence 
should be noted. Reduction of jet noise through turbulence suppression is one. It has 
been well substantiated that the breaking up, or suppression, of the largest eddies will 
reduce far-field noise levels (see, for example, Berenak 1960). This has been achieved 
by altering the jet exhaust nozzle into several smaller nozzles. In relation to the present 
model, the smaller nozzles establish smaller turbulence scales that effectively suppress 
the generation of large-scale turbulence (instabilities). There may also be application 
of the concepts discussed here to the dynamics of the large-scale structures that have 
been studied by Brown, Roshko, and co-workers (e.g. Brown & Roshko 1974), since 
these structures are generally superimposed on a smaller-scaled background turbu- 
lence field a t  high Reynolds numbers. 
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